skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Samson J. Koelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Manifold embedding algorithms map high-dimensional data down to coordinates in a much lower-dimensional space. One of the aims of dimension reduction is to find intrinsic coordinates that describe the data manifold. The coordinates returned by the embedding algorithm are abstract, and finding their physical or domain-related meaning is not formalized and often left to domain experts. This paper studies the problem of recovering the meaning of the new low-dimensional representation in an automatic, principled fashion. We propose a method to explain embedding coordinates of a manifold as non-linear compositions of functions from a user-defined dictionary. We show that this problem can be set up as a sparse linear Group Lasso recovery problem, find sufficient recovery conditions, and demonstrate its effectiveness on data 
    more » « less